時(shí)隔半年,繼“破曉(PoX)”皮秒閃存器件問(wèn)世,復(fù)旦大學(xué)在二維電子器件工程化道路上再獲里程碑式突破!
復(fù)旦大學(xué)集成芯片與系統(tǒng)全國(guó)重點(diǎn)實(shí)驗(yàn)室集成電路與微納電子創(chuàng)新學(xué)院周鵬-劉春森團(tuán)隊(duì)研發(fā)的“長(zhǎng)纓(CY-01)”架構(gòu)將二維超快閃存器件“破曉(PoX)”與成熟硅基CMOS工藝深度融合,率先研發(fā)出全球首顆二維-硅基混合架構(gòu)芯片。
這一突破攻克了新型二維信息器件工程化的關(guān)鍵難題,為新一代顛覆性器件縮短應(yīng)用化周期提供范例,也為推動(dòng)信息技術(shù)邁入全新高速時(shí)代提供強(qiáng)力支撐。
相關(guān)研究成果以《全功能二維-硅基混合架構(gòu)閃存芯片》(A full-featured 2D flash chip enabled by system integration)為題,于北京時(shí)間10月8日晚間在《自然》(Nature)期刊上發(fā)表。
從原子級(jí)器件到功能芯片,跨越“從實(shí)驗(yàn)室到工廠”鴻溝
大數(shù)據(jù)與人工智能時(shí)代對(duì)數(shù)據(jù)存取性能提出了極致要求,而傳統(tǒng)存儲(chǔ)器的速度與功耗已成為阻礙算力發(fā)展的“卡脖子”問(wèn)題之一。今年4月,周鵬-劉春森團(tuán)隊(duì)于《自然》(Nature)期刊提出“破曉”二維閃存原型器件,實(shí)現(xiàn)了400皮秒超高速非易失存儲(chǔ),是迄今最快的半導(dǎo)體電荷存儲(chǔ)技術(shù),為打破算力發(fā)展困境提供了底層原理。
然而,顛覆性器件要真正走向系統(tǒng)級(jí)應(yīng)用,往往是一場(chǎng)漫長(zhǎng)的馬拉松。回溯硅基芯片的發(fā)展歷程,半導(dǎo)體晶體管自1947年誕生起,歷經(jīng)貝爾實(shí)驗(yàn)室、仙童與英特爾等頂尖力量二十余年的接力研發(fā),才終于催生出全球第一顆CPU。
作為集成電路的前沿領(lǐng)域,二維電子學(xué)在近年來(lái)獲得諸多關(guān)注,但研究者們最關(guān)心的問(wèn)題莫過(guò)于“LAB to FAB(從實(shí)驗(yàn)室到工廠)”難題,也就是這項(xiàng)技術(shù)未來(lái)是否可以得到真正的應(yīng)用。如何加速產(chǎn)業(yè)化進(jìn)程,讓二維電子器件走向功能芯片?周鵬-劉春森團(tuán)隊(duì)主動(dòng)融入產(chǎn)業(yè)鏈,嘗試從未來(lái)應(yīng)用的終點(diǎn)出發(fā),“從10到0”倒推最具可能性的技術(shù)發(fā)展路徑。
“從目前技術(shù)來(lái)看,存儲(chǔ)器是二維電子器件最有可能首個(gè)產(chǎn)業(yè)化的器件類型。因?yàn)樗鼘?duì)材料質(zhì)量和工藝制造沒(méi)有提出更高要求,而且能夠達(dá)到的性能指標(biāo)遠(yuǎn)超現(xiàn)在的產(chǎn)業(yè)化技術(shù),可能會(huì)產(chǎn)生一些顛覆性的應(yīng)用場(chǎng)景。”在存儲(chǔ)器領(lǐng)域深耕多年的周鵬認(rèn)為。
當(dāng)前,CMOS(Complementary Metal Oxide Semiconductor,互補(bǔ)金屬氧化半導(dǎo)體)技術(shù)是集成電路制造的主流工藝,市場(chǎng)中的大部分集成電路芯片均使用CMOS技術(shù)制造,產(chǎn)業(yè)鏈較為成熟。團(tuán)隊(duì)認(rèn)為,如果要加快新技術(shù)孵化,就要將二維超快閃存器件充分融入CMOS傳統(tǒng)半導(dǎo)體產(chǎn)線,而這也能為CMOS技術(shù)帶來(lái)全新突破。
基于CMOS電路控制二維存儲(chǔ)核心的全片測(cè)試支持8-bit指令操作,32-bit高速并行操作與隨機(jī)尋址,良率高達(dá)94.3%。這也是迄今為止世界上首個(gè)二維-硅基混合架構(gòu)閃存芯片,性能“碾壓”目前的Flash閃存技術(shù),首次實(shí)現(xiàn)了混合架構(gòu)的工程化。
“從第一個(gè)原型晶體管到第一款 CPU花了大約24年,而我們通過(guò)把先進(jìn)技術(shù)融入工業(yè)界現(xiàn)有的CMOS產(chǎn)線,這一原本需要數(shù)十年的積累過(guò)程被大幅壓縮,未來(lái)可以進(jìn)一步加速探索顛覆性應(yīng)用。”劉春森總結(jié)。
創(chuàng)新集成工藝實(shí)現(xiàn)二維材料與CMOS融合
為了找到這條“正確的路”,團(tuán)隊(duì)前期經(jīng)歷了5年的探索試錯(cuò),在單個(gè)器件、集成工藝等多點(diǎn)協(xié)同攻關(guān)。團(tuán)隊(duì)的第一項(xiàng)集成工作發(fā)表于2024年的Nature Electronics,在最理想的原生襯底上實(shí)現(xiàn)了二維良率的突破,這為他們?cè)谡鎸?shí)復(fù)雜的CMOS襯底上解決問(wèn)題提供了基礎(chǔ)。
人們現(xiàn)在所說(shuō)的芯片多由硅材料制作。而硅材料和二維材料可以說(shuō)天差地別——硅片厚度往往在幾百微米,一些薄層硅至少也有幾十納米;而二維半導(dǎo)體材料是原子級(jí)別,相當(dāng)于厚度不到1納米。
“二維半導(dǎo)體作為一種全新的材料體系,在國(guó)際上所有的集成電路制造工廠里都是不存在的。一旦引入新材料,就有可能對(duì)其他電子器件產(chǎn)生不可估量的影響,導(dǎo)致產(chǎn)線被污染,這是所有芯片廠商都無(wú)法接受的。”周鵬介紹。
如何將二維材料與CMOS集成又不破壞其性能,是團(tuán)隊(duì)需要攻克的核心難題。CMOS電路表面有很多元件,如同一個(gè)微縮“城市”,有高樓也有平地,高低起伏;而二維半導(dǎo)體材料厚度僅有1-3個(gè)原子,如同“蟬翼”般纖薄而脆弱,如果直接將二維材料鋪在CMOS電路上,材料很容易破裂,更不用談實(shí)現(xiàn)電路性能。
“就好比我們從太空看上海,似乎很平坦,但這個(gè)城市內(nèi)部其實(shí)有400多米、100多米或者幾十米高度不等的建筑。如果鋪一張薄膜在城市上方,膜本身就會(huì)不平整。”周鵬形象比喻道。
這也是為什么全世界的二維半導(dǎo)體研究者目前只能在極為平整的原生襯底上加工材料。一種解決思路是將CMOS的襯底“磨平”以適應(yīng)二維材料,但要實(shí)現(xiàn)原子級(jí)平整并不現(xiàn)實(shí)。
“我們沒(méi)有必要去改變CMOS,而需要去適應(yīng)它。”團(tuán)隊(duì)決定從本身就具有一定柔性的二維材料入手,通過(guò)模塊化的集成方案,先將二維存儲(chǔ)電路與成熟CMOS電路分離制造,再與CMOS控制電路通過(guò)高密度單片互連技術(shù)(微米尺度通孔)實(shí)現(xiàn)完整芯片集成。
正是這項(xiàng)核心工藝的創(chuàng)新,實(shí)現(xiàn)了在原子尺度上讓二維材料和CMOS襯底的緊密貼合,最終實(shí)現(xiàn)超過(guò)94%的芯片良率。團(tuán)隊(duì)進(jìn)一步提出了跨平臺(tái)系統(tǒng)設(shè)計(jì)方法論,包含二維-CMOS電路協(xié)同設(shè)計(jì)、二維-CMOS跨平臺(tái)接口設(shè)計(jì)等,并將這一系統(tǒng)集成框架命名為“長(zhǎng)纓(CY-01)架構(gòu)”。
計(jì)劃3-5年集成至百萬(wàn)量級(jí),有望顛覆傳統(tǒng)存儲(chǔ)器體系
銜接起實(shí)驗(yàn)室成果與產(chǎn)業(yè)化需求,確保理論創(chuàng)新與應(yīng)用轉(zhuǎn)化能夠“雙腿并行”,是周鵬-劉春森團(tuán)隊(duì)在研究中相互交織的兩條主線。依托前期完成的研究成果與集成工作,此次打造出的芯片已成功流片。
從基礎(chǔ)研究到工程化應(yīng)用,團(tuán)隊(duì)已跨越最艱難一步,后續(xù)迭代進(jìn)程將進(jìn)一步加快。他們下一步計(jì)劃建立實(shí)驗(yàn)基地,與相關(guān)機(jī)構(gòu)合作,建立自主主導(dǎo)的工程化項(xiàng)目,并計(jì)劃用3-5年時(shí)間將項(xiàng)目集成到兆量級(jí)水平,期間產(chǎn)生的知識(shí)產(chǎn)權(quán)和IP可授權(quán)給合作企業(yè)。
人工智能時(shí)代,當(dāng)下的AI系統(tǒng)瓶頸正在從前端的算力轉(zhuǎn)向后端的存儲(chǔ)和數(shù)據(jù),未來(lái)的模型會(huì)越來(lái)越龐大。多位業(yè)界人士表示看好該成果以更快速度從實(shí)驗(yàn)室走向大規(guī)模應(yīng)用,融入個(gè)人電腦、移動(dòng)端設(shè)備等場(chǎng)景。
存儲(chǔ)器產(chǎn)業(yè)界代表認(rèn)為,團(tuán)隊(duì)研發(fā)的二維器件具有天然的訪問(wèn)速度優(yōu)勢(shì),可突破閃存本身速度、功耗、集成度的平衡,未來(lái)或可在3D應(yīng)用層面帶來(lái)更大的市場(chǎng)機(jī)會(huì),下一步期待通過(guò)產(chǎn)學(xué)研協(xié)同合作,為每年600億美金的市場(chǎng)帶來(lái)變革。
“這項(xiàng)成果不只是延續(xù)性的技術(shù)改良,更多的是存儲(chǔ)速度和效率上的一次顛覆性進(jìn)步。”復(fù)容投資代表分析,該技術(shù)已形成“科學(xué)-工程-系統(tǒng)”閉環(huán),符合AI時(shí)代算力存儲(chǔ)需求,且通過(guò)依托成熟CMOS產(chǎn)線,能夠縮短研發(fā)周期,降低商業(yè)化門檻。
“這是中國(guó)集成電路領(lǐng)域的‘源技術(shù)’,使我國(guó)在下一代存儲(chǔ)核心技術(shù)領(lǐng)域掌握了主動(dòng)權(quán)。”展望二維-硅基混合架構(gòu)閃存芯片的未來(lái),周鵬-劉春森團(tuán)隊(duì)期待該技術(shù)顛覆傳統(tǒng)存儲(chǔ)器體系,讓通用型存儲(chǔ)器取代多級(jí)分層存儲(chǔ)架構(gòu),為人工智能、大數(shù)據(jù)等前沿領(lǐng)域提供更高速、更低能耗的數(shù)據(jù)支撐,讓二維閃存成為AI時(shí)代的
標(biāo)準(zhǔn)存儲(chǔ)方案。
復(fù)旦大學(xué)集成電路與微納電子創(chuàng)新學(xué)院、集成芯片與系統(tǒng)全國(guó)重點(diǎn)實(shí)驗(yàn)室研究員劉春森和教授周鵬為論文通訊作者,劉春森研究員和博士生江勇波、沈伯僉、袁晟超、曹振遠(yuǎn)為論文第一作者。研究工作得到了科技部、教育部、國(guó)家自然科學(xué)基金委、上海市科委、科學(xué)探索獎(jiǎng)等項(xiàng)目的資助,以及教育部創(chuàng)新平臺(tái)的支持。
昵稱 驗(yàn)證碼 請(qǐng)輸入正確驗(yàn)證碼
所有評(píng)論僅代表網(wǎng)友意見(jiàn),與本站立場(chǎng)無(wú)關(guān)